•  
  •  
 

Article Title

Farklı zaman ölçekli EEG işaretlerinden epilepsi nöbetinin otomatik tespiti

Abstract

Epilepsi halk arasındaki adı ile sara kendini sürekli nöbetler ile tekrarlayan yaygın bir hastalıktır. Dünya nüfusunun yaklaşık olarak % 1’de görülen bu hastalık beynin bir bölümünde yahut tamamında meydana gelen ani, beklenmedik ve düzensiz elektriksel boşalma sunucu ortaya çıkan klinik bir durumdur. Beyinde bulunan sinir hücrelerinin elektriksel durum analizi anlamına gelen elektroensefalografi (EEG) epilepsinin tespiti için önemli bilgiler içermektedir. Bu sebeple EEG işaretleri birçok uzmanın ilgilendiği bir araştırma alanı haline gelmiştir. Bu çalışmamamızda Bonn Üniversitesi veri tabanından (A,B,C,D,E) alınan 23,6 saniye 4096 örnek uzunluğunda sağlıklı ve epilepsi nöbeti geçiren deneklerden alınan işaretlerden sadece A ve E işaret kümeleri kullanılarak gerçekleştirilen bir otomatik örüntü tanıma sistemi sunulmuştur. Sunulan örüntü tanıma sistemi ön işlem, öznitelik çıkarım ve sınıflandırma olmak üzere üç aşamadan meydana gelmiştir. Birinci aşamada 23,6 saniye ve 4096 örnekten oluşan EEG işaretleri 128, 256, 512, 1024, 2048, 4096 uzunluğunda bölütlere ayrılmıştır. İkinci aşamada parametrik olmayan güç spektral yoğunluk (GSY) yöntemlerinden Peridogram ve Welch yöntemleri kullanılarak EEG işaretlerinin spektral bilgisi elde edilmiştir. Welch GSY kestirimi yapılırken her bir EEG işaret uzunluğunun dörtte biri uzunluğunda hamming penceresi kullanılmış ve parçaların örtüşme oranı %50 olarak seçilmiştir. GSY kestirimi yapıldıktan sonra veri boyutunu azalmak için tüm EEG işaretlerine aritmetik ortalama uygulanmış ve her bir bölüt 16 örnek uzunluğunda öznitelik vektörü ile temsil edilmiştir. Üçüncü ve son aşamada her bir EEG bölütü için elde edilen ve 16 örnek uzunluğunki öznitelik vektörleri 5-katlı çapraz doğrulama yöntemi kullanılarak k en yakın komşu algoritması (k-NN), destek vektör makinesi (SVM), aşırı öğrenme makinesi (ELM) ile sınıflandırılmıştır. Tüm sınıflandırıcılar ile yapılan çalışmalarda maksimum %100 sonuç elde edilmiştir.

https://dergipark.org.tr/tr/download/article-file/445684

Share

COinS