•  
  •  
 

Article Title

Parmak hareketlerine ilişkin ECoG örüntülerin AR tabanlı öznitelikler ile sınıflandırılması

Abstract

Bu çalışmasında, ECoG kayıtları kullanılarak parmak hareketlerinin sınıflandırılması amaçlanmıştır. Çalışmada BCI Competition IV yarışmasında sunulan Data set IV isimli veri kümesi kullanılmıştır. Veri kümesinde üç epilepsi hastasına ilişkin ECoG kayıtları ve parmak hareketlerini gösteren elektronik eldiven kayıtları yer almaktadır. Eldiven kayıtları referans alınarak, parmak hareketlerinin yer aldığı ECoG bölütleri belirlenmiştir. Farklı uzunluklardaki belirlenen bölütlerin öznitelik vektörleri, özbağlanımlı (AR) modelleme ile elde edilmiştir. Öznitelik vektörleri kNN ve DVM yöntemleri ile sınıflandırılmıştır. Sınıflandırıcı açısından bakıldığında, DVM yönteminin kNN sınıflandırıcısına göre daha iyi bir performans sergilediği görülmektedir. DVM ile yapılan sınıflandırılma işleminde, her üç denek için iki parmağın sınıflandırma başarı ortalaması %87.35, üç parmağın sınıflandırma başarı ortalaması %66.97, dört parmağın sınıflandırma başarı ortalaması %50.06 ve tüm parmakların sınıflandırma başarı ortalaması %34.41 olarak elde edilmiştir. kNN ile yapılan sınıflandırılma işleminde, her üç denek için iki parmağın sınıflandırma başarı ortalaması %75.35, üç parmağın sınıflandırma başarı ortalaması %55.50, dört parmağın sınıflandırma başarı ortalaması %39.00 ve tüm parmakların sınıflandırma başarı ortalaması %31.90 olarak elde edilmiştir. AR katsayıları açısından bakıldığında, çoğunlukla m=3 katsayı ile en yüksek başarımların elde edildiği görülmüştür. Denekler açısından bakıldığında, tüm sınıflandırma işlemlerinde denek 1’in en yüksek sınıflandırma performansına sahip olduğu görülmektedir. Denek 2 ve denek 3’ün sınıflandırılacak parmak sayısına göre farklı performanslar sergiledikleri görülmektedir. Sınıflandırılan parmak sayısı açısından bakıldığında, ayrıştırılacak parmak sayısının artması ile başarı oranı dramatik olarak düştüğü görülmektedir. Sınıf sayısının artması ile hem DVM hem de kNN sınıflandırıcı performanslarının oldukça düşük seviyelerde yer aldığı görülmektedir.

https://dergipark.org.tr/tr/download/article-file/302737

Share

COinS